skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Su-Keene, Eleanor J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Maternal inheritance of mitochondria creates a sex‐specific selective sieve through which mitochondrial mutations harmful to males but not females accumulate and contribute to sexual differences in longevity and disease susceptibility. Because eggs and sperm are under disruptive selection, sperm are predicted to be particularly vulnerable to the genetic load generated by maternal inheritance, yet evidence for mitochondrial involvement in male fertility is limited and controversial. Here, we exploit the coexistence of two divergent mitochondrial haplogroups (A and B2) in a Neotropical arachnid to investigate the role of mitochondria in sperm competition. DNA profiling demonstrated that B2‐carrying males sired more than three times as many offspring in sperm competition experiments than A males, and this B2 competitive advantage cannot be explained by female mitochondrial haplogroup or male nuclear genetic background. RNA‐Seq of testicular tissues implicates differential expression of mitochondrial oxidative phosphorylation (OXPHOS) genes in the B2 competitive advantage, including a 22‐fold upregulation ofatp8in B2 males. Previous comparative genomic analyses have revealed functionally significant amino acid substitutions in differentially expressed genes, indicating that the mitochondrial haplogroups differ not only in expression but also in DNA sequence and protein functioning. However, mitochondrial haplogroup had no effect on sperm number or sperm viability, and, when females were mated to a single male, neither male haplogroup, female haplogroup nor the interaction between male/female haplogroup significantly affected female reproductive success. Our findings therefore suggest that mitochondrial effects on male reproduction may often go undetected in noncompetitive contexts and may prove more important in nature than is currently appreciated. 
    more » « less